3. Provide property tax revenues to Kern County;
4. Assist Kern County in promoting its role as the State’s leading renewable energy producer;
5. Provide green jobs to Kern County and the State of California;
6. Realize the full potential of the wind resource;
7. Result in an economically feasible renewable energy project that would be developed through commercially available financing;
8. Supply clean, safe, renewable energy for 9,000 homes; and

1.4.4 Proposed Project Characteristics

Major components of the proposed project include the following.

- Up to a maximum of 116 WTGs not to exceed 500 feet in height with associated generators, towers, foundations, and pad mounted transformers (each WTG could range from 1 MW to 3 MW), for a total generation capacity not to exceed 339 MW of electricity;
- Four existing and up to four additional unguyed permanent met towers (North Sky River Wind Energy Project);
- Four temporary met towers (Jawbone Wind Energy Project);
- On-site and off-site project access roads, control cables, power collection cables, and transmission lines necessary to serve the proposed project and connect to the California Independent System Operator (CAISO) grid;
- One project substation to step up the voltage generated by the WTG to meet the electrical transmission system’s 230-kV voltage;
- Two O&M facility areas (North Sky River Wind Energy Project – 5 acres; Jawbone Wind Energy Project – 6.5 acres);
- Two remote staging/office trailers; and
- One temporary portable concrete batch plant.

1.5 Environmental Impacts

1.5.1 Impacts Not Further Considered in this EIR

As discussed in Appendix A (Notice of Preparation/Initial Study), the proposed project was determined to have no impact with regard to the following impact thresholds, which are therefore not analyzed in this EIR.

Agricultural and Forest Resources

- Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use;
- Involve other changes in the existing environment which, because of their location or nature, could result in conversion of Farmland to non-agricultural use or conversion of forest land to non-forest use; and
- Result in the cancellation to an open space contract made pursuant to the California Land Conservation Act of 1965 or Farmland Security Zone Contract for any parcel of 100 or more acres (Section 15206(b)(3) Public Resources Code).
Air Quality
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or State ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors) within the San Joaquin Valley Unified Air Pollution Control District; and
- Create Objectionable Odors Affecting a Substantial Number of People.

Hazards and Hazardous Materials
- Emit Hazardous Emissions or Handle Hazardous or Acutely Hazardous Materials, Substances, or Waste Within ¼ Mile of an Existing or Proposed School; and
- Be Located On a Site That is Included On a List of Hazardous Materials Sites Compiled Pursuant to Government Code Section 65962.5 and, as a Result, Create a Significant Hazard to the Public or the Environment.

The following impact thresholds were initially determined to have no impact, but have been carried forward for re-evaluation in the EIR because it was determined after circulation of the NOP/IS that further analysis was required:
- For a project located within the adopted Kern County Airport Land Use Compatibility Plan or within two miles of a public airport, would the project result in a safety hazard for people residing or working in the project area; and
- Would the project generate vectors (flies, mosquitoes, rodents, etc.) or have a component that includes agricultural waste.

Hydrology and Water Quality
- Place Housing Within a 100-year Flood Hazard Area as Mapped on a Federal Flood Hazard Boundary or Flood Insurance Rate Map or Other Flood Hazard Delineation Map;
- Expose People or Structures to a Significant Risk of Loss, Injury, or Death Involving Flooding, Including Flooding as a Result of the Failure of a Levee or Dam.

Land Use and Planning
- Physically Divide an Established Community.

The following impact threshold was initially determined to have no impact, but has been carried forward for re-evaluation in the EIR because it was determined after circulation of the NOP/IS that further analysis was required:
- Conflict with any applicable habitat conservation plan or natural community conservation plan.

Mineral Resources
- Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the State.

Noise
The following impact thresholds were initially determined to have no impact, but have been carried forward for re-evaluation in the EIR because it was determined after circulation of the NOP/IS that further analysis was required:
1.0 Executive Summary

- For a Project Located within the Kern County Airport Land Use Compatibility Plan, Exposure of People Residing or Working in the Project Area to Excessive Noise Levels; and
- For a project within the vicinity of a private airstrip, exposure of people residing or working in the project area to excessive noise levels.

Population and Housing

- Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure).

Recreation

- Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated.

Transportation and Traffic

- Conflict with an Applicable Congestion Management Program, Including, but not Limited to Level of Service (LOS) Standards and Travel Demand Measures, or Other Standards Established by the County Congestion Management Agency for Designated Roads or Highways; Specifically, Would Implementation of the Project Cause the LOS for Roadways and/or Intersections to Decline Below the Following Thresholds or Further Degrade Already Degraded Segment(s):
 i. Metropolitan Bakersfield General Plan LOS “C”
- Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities.

Utilities

- Result in a Determination By the Wastewater Treatment Provider Which Serves or May Serve the Project That it Has Adequate Capacity to Serve the Project's Projected Demand in Addition to the Provider's Existing Commitments;
- Be Served by a Landfill With Sufficient Permitted Capacity to Accommodate the Project's Solid Waste Disposal Needs.

Impacts related to all of the thresholds associated with the following resource areas are evaluated in this EIR for their potential significance:

Aesthetics | Greenhouse Gas Emissions
Biological Resources | Noise
Cultural Resources | Public Services
Geology and Soils

1.5.2 Impacts of the Proposed Project

The following effects were determined after full analysis to have no potential for impacts to occur:

Less than Significant Impacts (Including Significant Impacts that can be Mitigated, Avoided, or Substantially Lessened)

Table 1-1 (all Tables are at the end of this Chapter) presents the less-than-significant and the significant but mitigable impacts of the proposed project. Recommended mitigation measures are
also listed with the associated impacts. Less-than-significant cumulative impacts are included in the table. Sections 4.1 through 4.17 of the EIR present detailed analysis of these impacts and describe the means by which the mitigation measures listed in Table 1-1 would reduce impacts to a less-than-significant level.

Unavoidable Significant Adverse Impacts

Table 1-2 presents the significant and unavoidable impacts and mitigation measures for the proposed project. Sections 4.1 through 4.17 present detailed analysis of these impacts and describe the means by which the mitigation measures listed in Table 1-2 would reduce the severity of impacts to the extent feasible.

1.5.3 Significant Cumulative Impacts

Table 1-3 presents the significant and unavoidable cumulative impacts and mitigation measures for the proposed project. Sections 4.1 through 4.17 present detailed analysis of these impacts and describe the means by which the mitigation measures listed in Table 1-3 would reduce impacts to the extent feasible.

1.5.4 Growth Inducement

The KCGP recognizes that certain forms of growth are beneficial, both economically and socially. Section 15126.2(d) of the State CEQA Guidelines provides the following guidance on growth-inducing impacts: a project is identified as growth inducing if it “could foster economic or population growth, or the construction of additional housing, either directly or indirectly, in the surrounding environment.”

Growth inducement can be a result of new development that requires an increase in employment, removes barriers to development, or provides resources that lead to secondary growth. With respect to employment, the proposed project would not induce substantial growth because it would employ up to 180 people during construction, a number of who are expected to be based in the nearby areas of California City, Mojave, Tehachapi, Lancaster and/or Palmdale and up to 32 full-time and part-time staff during operation. Therefore, this project would not result in a large increase in employment that would significantly induce growth.

With respect to removing barriers to development, such as through providing access to previously undeveloped areas, the project would involve construction of temporary and permanent roads. As described in Section 3.5, Proposed Project Characteristics, temporary roads would be used during construction to access areas within the proposed project site. Permanent roads would be used during operations to access proposed project facilities for maintenance. Permanent roads would be required to provide access from the project site entrances to substations and WTGs. Some of these roads may be removed and restored after initial construction; some may be reduced in size; and others may be maintained at their construction size for the life of the proposed project to allow for crane usage during operations and maintenance. In general, these roads would provide for access to the project site and would not provide access into other areas thereby promoting growth-inducing development. No other development would be anticipated as a result of these roads, and installation of the WTGs would tend to preclude other development from occurring.

While the project would contribute to energy supply, which supports growth, the development of power infrastructure is a response to increased market demand and is not a factor that induces new growth. Kern County planning documents already permit and anticipate a certain level of growth in
the area of the project and in the state as a whole, along with attendant growth in energy demand. It is this anticipated growth that drives energy-production projects, not vice versa. The project would supply energy to accommodate and support existing demand and projected growth, but it would not foster any new growth. Therefore, any link between the project and growth in Kern County would be speculative.

In Kerncrest Audubon Society v. Los Angeles Department of Water and Power, the analysis of growth-inducing effects contained in the EIR for the Pine Tree Wind Development Project was challenged. Plaintiffs argued that the discussion was too cursory to provide adequate information about how additional electricity generated by the project would sustain further growth in the Los Angeles area. The court held that the additional electricity that the project would produce was intended to meet the current forecast of growth in the Los Angeles area. As such, the wind development project would not cause growth, and so it was not reasonable to require a detailed analysis of growth-inducing impacts. In addition, EIRs for similar energy projects have contained similarly detailed analyses of growth-inducing impacts. Their conclusions that increasing the energy supply would not create growth has been upheld, because (1) the additional energy would be used to ease the burdens of meeting existing energy demands within and beyond the area of the project; (2) the energy would be used to support already-projected growth; or (3) the factors affecting growth are so multifarious that any potential connection between additional energy production and growth would necessarily be too speculative and tenuous to merit extensive analysis. Thus, as has been upheld in the courts, this level of analysis is sufficient to inform the public and decision makers of the growth-inducing impacts of the project.

1.5.5 **Irreversible Impacts**

Section 15126.2(c) of the CEQA Guidelines defines the nature of an irreversible impact as an impact that uses non-renewable resources during the initial and continued phases of the proposed project. Irreversible impacts can also result from damage caused by environmental accidents associated with the project. Irretrievable commitments of resources should be evaluated to assure that such consumption is justified.

During construction, non-renewable resources, including oil and gas to power combustible engines, would be used. However, the amount of non-renewable resources would be limited. During operation, the proposed project would consume minimal amounts of oil, gas, and other non-renewable resources because it would not require an outside source of electricity or gas. As described in Section 4.17, “Utilities,” wind power generated by the proposed project would provide adequate electrical energy. The proposed project would require the use of enough propane to heat the operations and maintenance building.

Ultimately, none of the unavoidable impacts of the proposed project would be irreversible. Impacts on air quality would be temporary and would cease once construction is complete. At the end of the lifespan of the proposed project, the turbines and all aboveground equipment would be removed, restoring the visual character of the proposed project site to its preconstruction state. Finally, with the removal of the wind generating equipment, avian mortality associated with the proposed project would cease, and species population levels would fluctuate in response to other factors.

1.5.6 **Energy Conservation**

In order to assure that energy implications are considered in project decisions, CEQA requires that EIRs include a discussion of the potential energy impacts of proposed projects, with particular
emphasis on avoiding or reducing inefficient, wasteful and unnecessary consumption of energy (see Public Resources Code section 21100(b)(3)). According to Appendix F of the State CEQA Guidelines, the goal of conserving energy implies the wise and efficient use of energy including: (1) decreasing overall per capita energy consumption; (2) decreasing reliance on natural gas and oil; and (3) increasing reliance on renewable energy sources.

The proposed project itself would help achieve this goal because it would develop a renewable source of power, helping to offset the use of nonrenewable resources and contribute to an overall reduction of nonrenewable resources currently used to generate electricity. In addition, Section 4.7 (Greenhouse Gas Emissions) describes effects on greenhouse gas emissions that would be caused by implementation of the proposed project, including a discussion on the effects of the project on energy resources.

Compliance with all applicable building codes, as well as with County policies and proposed measures and mitigation measures identified in this EIR, would ensure that energy is conserved to the maximum extent possible.

Resources that would be consumed as a result of project implementation include water, electricity, and fossil fuels during construction and operation. Additionally, construction would require the manufacture of new materials, some of which would not be recyclable at the end of the proposed project’s lifetime, and the energy required for the production of these materials would also result in an irretrievable commitment of natural resources. However, the amount and rate of consumption of these resources would not result in significant environmental impacts or the unnecessary, inefficient, or wasteful use of resources. Compliance with all applicable building codes, as well as County policies and the mitigation measures identified in this EIR would ensure that all natural resources are conserved to the maximum extent possible.

No increases in inefficiencies or unnecessary energy consumption are expected to occur as a direct or indirect consequence of the proposed project. No mitigation measures above those already present in this EIR would be necessary.

1.6 Alternatives to the Proposed Project

Section 15126.6 of the State CEQA Guidelines states that an EIR must address “a range of reasonable alternatives to the project, which would feasibly attain most of the basic objectives of the project but would avoid or substantially lessen any of the significant effects of the project, and evaluate the comparative merits of the alternatives”. Based on the significant and unavoidable impacts on aesthetics, air quality, biological resources, cultural resources and recreation, along with the proposed project objectives, several alternatives were considered as summarized below and discussed in detail in Chapter 6.

1.6.1 Alternatives Eliminated from Further Consideration

Relocate to Altamont Pass Wind Resource Area (APWRA)

The APWRA is located in Alameda County, California. Based on a review of aerial photographs, this area is at full or nearly full build-out, and would not accommodate a contiguous or semi-contiguous project of a similar magnitude as the proposed project. In addition, because it is a bird migration corridor, biological impacts would not be significantly reduced, and would potentially increase, if the project were relocated to the Altamont Pass area (Anderson, et al., 2000).