operated remote location. All O&M staff would be regularly trained to provide best practice health, safety, and environmental protection services.

After the initial startup period, the WTGs would be serviced at regular intervals. Annual overhaul maintenance service would also be performed. Most servicing would be performed onsite. The regular routine typically consists of inspecting and testing safety systems; inspecting wear and tear on components; lubricating the mechanical systems; performing electronic diagnostics on the control systems; and inspecting the overall structural components of the WTGs. Blade cleaning may also be performed and could be required if accumulation of debris on the lead edge reduced aerodynamic performance. The blades would be spray-washed with water, using a high pressure sprayer with extension nozzles, from a standard boom manlift.

During operation, hazardous and potentially hazardous chemicals (for example, oil, grease, and ethylene glycol) would be used to lubricate and cool the WTGs and ancillary facilities; a radiator would dissipate heat and would contain a water and ethylene mixture that would be tested annually. The gearbox would contain 70 gallons of oil that would not be routinely renewed. The WTGs would be equipped with leak-proof gaskets. Possible leakage or spillage during operations and/or maintenance of the WTGs would be confined within the towers. A supply of chemicals would be stored on site in the maintenance yard. Due to the remote location of the site, it is expected that two 500-gallon diesel storage tanks would be installed on site to serve O&M vehicles. To minimize the potential for harmful releases through spills or contaminated runoff, chemicals would be stored in tanks or drums located within secondary containment areas. Use of extremely hazardous materials is not anticipated. Storage and use of hazardous materials would be subject to a hazardous materials management plan approved by Kern County.

Routine O&M work would be performed by the O&M staff and would be conducted at the proposed project site. When specialized equipment or expertise is required (that is, cranes for major repairs, power line or substation repairs, etc.), the project proponents would subcontract with the appropriate contractors. Additionally, each WTG supplier would have personnel on the proposed project site as necessary to perform warranty maintenance and operations services during the warranty period on the WTGs. These personnel may work out of an offsite office building in one of the local communities.

Project access roads would be periodically graded and compacted to maintain the design, safety, and environmental requirements during the life of the proposed project. Maintenance on cut and-fill slopes, culverts, grade separations, and drainage areas would be performed as necessary to minimize erosion problems and maintain functional drainage structures. The project proponents would be responsible for cleaning up all construction debris and maintaining the appearance of all proposed project roads and rights-of-way (ROWs) in cooperation with applicable parties.

3.9 Decommissioning and Repowering

Several factors would determine the life expectancy of the proposed project, the most critical of which are land rights, demand for the electricity generated, and proper maintenance. The proposed project has a life expectancy of 30 years, based on landowner lease arrangements and permit approval timeframes. If there is continued demand for the electricity generated by the proposed project, outdated or worn facility components, especially the WTGs, would be replaced or upgraded in order to repower the proposed project and keep it operational.
If the proposed project is decommissioned, all facilities which make up the proposed project would be dismantled and removed in accordance with all applicable County, State and federal laws; however, underground distribution cables, foundations and structures would remain in place. WTG foundations would be dismantled two feet below grade and underground cable risers would be cut off three feet below grade before being abandoned in place. Infrastructure facilities, including the proposed O&M facilities, switchyards, substations and overhead transmission lines would also be removed.

If the project proponent decides to re-power the project, the project proponent would have to apply for all required permits.

3.10 Related Projects

The project proponents have not filed any applications for additional wind projects in the general vicinity of the project. However, it is likely that additional similar projects will be developed within the TWRA and these future additional facilities are considered as part of the cumulative impacts discussion in this EIR. Discretionary action and permits from Kern County would likely be required, in addition to CUPs for temporary batch plants.

Southern California Edison (SCE) is currently constructing the TRTP, which is scheduled for overall completion of all segments in 2013. The TRTP would involve new and upgraded transmission infrastructure along 173 miles of new and existing ROWs in southern Kern County, portions of Los Angeles County, including the Angeles National Forest (ANF), and the southwestern portion of San Bernardino County, California. SCE’s stated objectives for the proposed project are to provide the electrical facilities necessary to integrate levels of new wind generation in excess of 700 MW and up to 4,500 MW in the TWRA (SCE, 2007). The TRTP would consist of Segments 4 through 11 (Segments 4 and 10 traverse the proposed project site), and related facilities. Segments 2 and 3 are discussed in Section 3.11.1, below. Projects involving upgrades to electrical transmission lines owned and operated by public utilities are within the exclusive jurisdiction of the California Public Utilities Commission. As required by CEQA, this EIR analyzes potential environmental impacts of the future transmission lines in the discussion of cumulative projects.

3.11 Cumulative Projects

CEQA requires that an EIR evaluate a project’s cumulative impacts. Cumulative impacts are the project’s impacts combined with the impacts of other related past, present and reasonably foreseeable future projects. As set forth in the State CEQA Guidelines, the discussion of cumulative impacts must reflect the severity of the impacts, as well as the likelihood of their occurrence; however, the discussion need not be as detailed as the discussion of environmental impacts attributable to the project alone. As stated in CEQA, Title 14, Section 21083(b), “a project may have a significant effect on the environment if the possible effects of a project are individually limited but cumulatively considerable.”

According to the State CEQA Guidelines:

Cumulative impacts refer to two or more individual effects which, when considered together, are considerable and which compound or increase other environmental impacts.