CHAPTER VII - NOISE ELEMENT

STATUTORY REQUIREMENTS

The contents of a Noise Element have been determined by the requirements of Section 65302(f) of the California Government Code and by "Guidelines for the Preparation and Content of Noise Elements of the General Plan" published by the California Office of Noise Control (ONC) in 1976. The Government Code and ONC Guidelines require that certain major noise sources and areas containing noise sensitive land uses be identified and quantified by preparing generalized noise exposure contours for current and projected levels of activity within the community.

Pursuant to the Government Code and ONC Guidelines, the following major noise sources were considered in the preparation of the Noise Element:

- Highways and freeways
- Primary arterials and major local streets
- Railroad operations
- Aircraft and airport operations
- Local industrial facilities
- Other stationary sources

Due to the size and scale of the noise contour maps (1"=400'), they are not reproduced in this document, but can be referenced in the City of Bakersfield Planning Department or the Kern County Department of Planning and Development Services.

Also considered in the preparation of the Noise Element are areas containing the following noise sensitive land uses:

- Schools
- Hospitals
- Rest homes
- Long-term medical or mental care facilities
- Other uses deemed noise sensitive by the local jurisdiction

The purpose of this Noise Element is to provide a means for protecting local citizens from the harmful effects of excessive exposure to noise.

OVERVIEW OF EXISTING CONDITIONS

MAJOR NOISE SOURCES

Based on discussions with government officials and the results of field studies by Brown-Buntin Associates (BBA), it was determined that there are four major sources of community noise within the study area. These sources are traffic on state highways and major local streets, railroad operations, airport operations and local industrial activities. Specific noise sources selected for study are listed.
STATE HIGHWAYS

- State Route 58
- State Route 99
- State Route 119
- State Route 178
- State Route 184
- State Route 204

MAJOR LOCAL STREETS

RAILROAD OPERATIONS

- Burlington Northern Santa Fe Railway (B.N.S.F.)
- Southern Pacific Transportation Company (SPTCo.)

AIRPORT OPERATIONS

- Kern County Airport (Meadows Field)
- Bakersfield Airpark

INDUSTRIAL FACILITIES AND OTHER MAJOR STATIONARY NOISE SOURCES

- Lake Ming Boat Races
- Mesa Marin Raceway
- Burlington Northern Santa Fe Classification Yard
- Southern Pacific Classification Yard
- Kern Rock Company
- Calcrete
- Joey Recycling Center
- Jack Frost Ice Company

A combination of noise monitoring and analytical noise modeling techniques were used to develop generalized noise exposure contours around the major noise sources identified above for existing (1985 or 1986) and future (2010) conditions.

The analytical methods used in this report closely follow recommendations made by ONC, and were supplemented where appropriate by field-measured noise level data to account for local conditions. It should be noted that the noise exposure contours presented in this report are based upon annual average or in some cases maximum noise level conditions, and are not intended to be site-specific where local topography, vegetation or intervening structures may significantly affect noise exposure at a particular location.

1. Highways and Major Local Streets

The Federal Highway Administration (FHWA) Highway Traffic Noise Prediction Model (FHWA-RD-77-108) was used to develop Community Noise Equivalent Level (CNEL) contours for state highways and major local streets within the study area.
The FHWA Model was developed to predict hourly L_{eq} values for free-flowing traffic conditions, and is generally considered to be accurate within plus or minus 1.5 dB. To predict CNEL values, it is necessary to determine the hourly distribution of traffic for a typical 24-hour day and adjust the traffic volume input data to yield an equivalent hourly traffic volume.

Traffic volumes and truck percentages for existing (1985-86) and future (2010) conditions on the state highways in the study area were obtained from Caltrans. Future projections of annual average daily traffic volumes on state highways are based upon a yearly growth factor of 3.6 percent which is the five-year average for 1979-1984 as published by Caltrans. Traffic volumes for existing and future conditions on major local streets were obtained from the City of Bakersfield and County of Kern Roads Departments.

Using existing traffic data and the FHWA methodology, traffic noise levels as defined by CNEL were calculated for existing (1985-86) and projected future (2010) traffic volumes on the state highways and the major local streets identified for study.

The approximate locations of the 60 and 65 dB CNEL contours for these roadways have been plotted on 400 scale maps. Only those contours which are located at distances of greater than 75 feet from the center of the roadway are shown on the 400 scale maps. It should be noted that since the methodology used to develop generalized contours did not take into consideration shielding which may be caused by buildings or topography in some areas, the distances on the 400 scale maps should be considered as worst-case estimates of traffic noise exposure in the community.

2. Railroad Operations

Two rail companies provide service in the Bakersfield area. Noise measurements of Burlington Northern Santa Fe and Southern Pacific Transportation Co. trains were conducted in Bakersfield in May 1986 to document noise levels generated by individual rail movements in the community. Noise level measurements of branch line operations were conducted.

Noise exposure levels as defined by CNEL for railroad operations in the study area were calculated using the Simplified Procedure for Assessment of Noise Emitted by On-Line Railroad Operations, prepared by Wyle Laboratories (Report No. 59197-1) in March 1974 and railroad operational data. The Wyle Methodology is an analytical method used to predict railway noise which is based upon reference energy emission levels for diesel locomotives and freight/passenger cars with consideration given to numbers of locomotives and cars, speed, track conditions, and distance to the receiver. The approximate locations of the 65 and 60 CNEL contours for 1986 conditions are shown on the 400 scale maps.

As in the case of traffic noise contours, railroad noise contours should be considered as estimates of worst-case exposure since no adjustments have been made for shielding provided by intervening topography or buildings. CNEL contours for the McKittrick and Oildale branch lines have not been illustrated on the 400 scale maps.
Although noise levels from individual train movements on these branch lines produce short term noise impacts when they occur, such impacts do not occur frequently enough to produce a significant noise exposure as defined by CNEL.

TABLE VII-1

Distance (Feet) from Center of Track to CNEL Contour Values for Existing (1986) Railroad Operations

<table>
<thead>
<tr>
<th>Railroad</th>
<th>Segment</th>
<th>CNEL 65 dB</th>
<th>CNEL 60 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Pacific Transportation Co.</td>
<td>SPTCo. Mainline Yard to the northwest (within 1,000’ of grade crossings)</td>
<td>342</td>
<td>730</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(631)</td>
<td>(1,360)</td>
</tr>
<tr>
<td>Southern Pacific Transportation Co. and Burlington Northern Santa Fe</td>
<td>SPTCo. Mainline Combined Operations Yard to Edison (within 1,000’ of grade crossings)</td>
<td>464</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(858)</td>
<td>(1,848)</td>
</tr>
<tr>
<td>Burlington Northern Santa Fe</td>
<td>AT&SF Mainline Yard to the northwest (within 1,000’ of grade crossings)</td>
<td>342</td>
<td>730</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(631)</td>
<td>(1,360)</td>
</tr>
<tr>
<td>Burlington Northern Santa Fe</td>
<td>SPTCo. Arvin Branchline (within 1,000’ of grade crossings)</td>
<td>369</td>
<td>794</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(681)</td>
<td>(1,468)</td>
</tr>
<tr>
<td>Southern Pacific Transportation Co.</td>
<td>SPTCo. McKittrick Branchline (within 1,000’ of grade crossings)</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(46)</td>
<td>(100)</td>
</tr>
<tr>
<td>Burlington Northern Santa Fe</td>
<td>SPTCo. Olddale Branchline (within 1,000’ of grade crossings)</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(46)</td>
<td>(100)</td>
</tr>
</tbody>
</table>

Source: Brown-Buntin Associates.

3. **Airport Operations**

Two airports are located within the planning area. Meadows Field is owned and operated by Kern County. Bakersfield Municipal Airpark is owned and operated by the City of Bakersfield.
CHAPTER VII - NOISE ELEMENT

In 1996, the City and County adopted the Airport Land Use Compatibility Plan (ALUCP). This document was prepared using the materials entitled “Kern County Airport Land Use Compatibility Plan” dated June 1994. It includes material, including noise contours, prepared by Hodges and Shutt, an aviation consulting firm under contract to the Kern Council of Governments (Kern COG).

The noise contours contained in the ALUCP are calculated based on aircraft activity forecasts which are set forth in an airport master plan or which are considered by the local agency to be plausible.

The locations of CNEL contours are one of the factors used to define compatibility zone boundaries and criteria. It is intended that noise compatibility criteria be applied at the general plan level. Because of the inherent variability of flight paths and other factors that influence noise emissions, the depicted contour boundaries are not absolute determinants of the compatibility of a given land use.

4. Industrial Facilities and Other Stationary Noise Sources

a. Calcrete

The Calcrete plant is located near the intersection of Pacheco and Wible Roads. The most significant sources of noise associated with this operation are vibrators located in the sand and cement bins to keep materials moving through the system.

Maximum noise levels during the operation of the cement bin vibrator were 60-65 dB(A) at approximately 500 feet northwest of the plant. Based upon the above-described noise level data and operational data, a generalized 60 dB CNEL contour was prepared depicting a worst case condition with a 12-hour work shift beginning at 7 a.m.

b. Lake Ming Boat Races

Lake Ming, located about nine miles northeast of central Bakersfield, is operated by the Kern County Parks and Recreation Department as a recreational lake for both power and sail boats. Several times each year, boat racing consisting of circle boat or drag boat racing, is permitted on the lake. On April 19, 1986, Brown-Buntin Associates monitored noise levels from drag racing events at four different locations around the lake in order to determine maximum noise levels (L_{max}).

The noise levels recorded by Brown-Buntin Associates and Kern County indicate that drag boat racing activity on Lake Ming can conflict with noise-sensitive land uses in the area. A generalized 75 dB(A) maximum noise level contour for boat racing activities at Lake Ming is shown on the 400 scale 1986 and 2010 noise exposure contour maps. 75 dB(A) represents the maximum exterior daytime noise level currently allowed by the City of Bakersfield Noise Element for residential properties. CNEL contours for boat racing on Lake Ming were not prepared since such activities occur only a few times per year.
c. Mesa Marin Raceway

Mesa Marin Raceway is located near the intersection of State Routes 178 and 184 about 8 miles east of central Bakersfield. Classes of modified stock cars racing at the track include Street Stocks, Super Modified Stocks, and Open Competition Stocks.

Noise level measurements near Mesa Marin Raceway were conducted by Brown-Buntin Associates during the evening of April 19, 1986. Typical median (L_{50}) noise levels recorded ranged from 61 to 70 dB(A) with typical maximum levels reaching 87 dB(A). At El Dorado Estates, about 2 miles from Mesa Marin maximum noise levels of 48-52 dB(A) were recorded. At a site 0.9 miles west of the raceway, maximum noise levels ranged from 58-62 dB(A).

In the parking lot of the raceway, maximum noise levels of 60-67 dB(A) were recorded. It should be noted that at this location the earthen berm which borders the southern portion of the oval track considerably reduces noise levels. Based upon the above-described topographical factors and noise level data, the worst case 70 and 75 dB(A) maximum noise level contours were plotted on 400 scale maps. CNEL contours were not prepared for this facility due to the relatively infrequent use of the track.

d. Kern Rock Company

The Kern Rock Company sand and gravel operation is located approximately 1,500 feet west of the intersection of Wible and Pacheco Roads. Noise generating activities include truck traffic (hauling sand and gravel to the stockpile area, picking up loads of bulk cement and hauling concrete ready-mix), and the operation of the plant itself. Based upon noise levels and plant operational data, the location of the 60 dB CNEL contour was estimated to be 300 feet from the plant.

e. Burlington Northern Santa Fe: Railroad Classification Yard

The Burlington Northern Santa Fe railroad yard is located east of Oak Street between 16th Street and California Avenue. Generalized CNEL contours for this facility were prepared using operational data obtained from the railroad for existing conditions. These are shown on the 400 scale noise exposure maps for 1986 and 2010. Operational data obtained from the railroad were intended to be representative of annual average conditions, although it was recognized that activity varies considerably with seasonal demands and economic conditions.

f. Southern Pacific Transportation Company: Railroad Classification Yard

The SPTCo. railroad classification yard is located east of Beale Avenue between Sumner and Kentucky Streets in Bakersfield. The Wyle methodology was used to develop generalized CNEL contours around the facility for existing levels of yard operations, which are shown on the large scale map.
Operational data were obtained from the railroad to represent annual average conditions, although it was recognized that activity varies considerably throughout the year due to seasonal demands and economic conditions.

g. **Jack Frost Ice Co.**

The Jack Frost Ice Co. facility is located at the southwest intersection of Stine Road and District Boulevard. Noise sources associated with the plant include two compressors located on the roof of the building and truck traffic entering and leaving the loading dock area.

Noise measurements with both compressors operating at a distance of 140 feet from the approximate center of the plant resulted in a noise level of 64.1 dB(A) L_{eq}. The approximate location of the 60 dB CNEL contour based upon the above-described noise level and operational data are shown on the large scale map.

h. **Joey Recycling Center**

This facility is located on the south side of White Lane between Hughes Lane and South H Street. Noise generating activities consist of the unloading and crushing of aluminum cans using a hydraulic press. Noise measurements 400 feet from the facility were conducted on the morning of May 14, 1986, while the crusher was in operation. The measured L_{eq} at this location was 64.7 dB(A). Based upon the above-described noise level and operational data, a generalized 60 dB CNEL contour was prepared and is shown on the 400 scale maps.

NOISE SENSITIVE AREAS

The following noise sensitive land uses have been identified in the study area:

- Residential areas
- Schools
- Convalescent and acute care hospitals
- Parks and recreational areas

As suggested by the Office of Noise Control Guidelines, a community noise survey was conducted in March 1986 to document existing noise exposure in areas of the community containing noise sensitive land uses. The purpose of the community noise survey was to define the existing noise environment in areas of the community outside the Ldn 60 dB contour where noise sensitive land uses are located; to provide a numerical check of noise levels determined by mathematical modeling techniques and to serve as a basis for establishing quantitative land use compatibility criteria and noise performance standards consistent with existing noise levels in the community. Since the geographic scope of the study area is over 400 square miles, including both developed and undeveloped lands, noise measurements were conducted only in urbanized areas.
Land Use Compatibility for Community Noise Environments

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Community Noise Exposure Ldn or CNEL, dB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55 60 65 70 75 80</td>
</tr>
<tr>
<td>Residential - Low Density Single Family, Duplex, Mobile Homes</td>
<td>![Shaded Cells]</td>
</tr>
<tr>
<td>Residential - Multi. Family</td>
<td>![Shaded Cells]</td>
</tr>
<tr>
<td>Transient Lodging - Motels, Hotels</td>
<td>![Shaded Cells]</td>
</tr>
<tr>
<td>Schools, Libraries, Churches, Hospitals, Nursing Homes</td>
<td>![Shaded Cells]</td>
</tr>
<tr>
<td>Auditoriums, Concert Halls, Amphitheatres</td>
<td>![Shaded Cells]</td>
</tr>
<tr>
<td>Sports Arena, Outdoor Spectator Sports</td>
<td>![Shaded Cells]</td>
</tr>
<tr>
<td>Playgrounds, Neighborhood Parks</td>
<td>![Shaded Cells]</td>
</tr>
<tr>
<td>Golf Courses, Riding Stables, Water Recreation, Cemeteries</td>
<td>![Shaded Cells]</td>
</tr>
<tr>
<td>Office Buildings, Business Commercial and Professional</td>
<td>![Shaded Cells]</td>
</tr>
<tr>
<td>Industrial, Manufacturing Utilities, Agriculture</td>
<td>![Shaded Cells]</td>
</tr>
</tbody>
</table>

Interpretation

- **Normally Acceptable**
 Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation requirements.

- **Conditionally Acceptable**
 New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning will normally suffice.

- **Normally Unacceptable**
 New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.

- **Clearly Unacceptable**
 New construction or development should generally not be undertaken.

(Source: Office of Noise Control, California Department of Health)

Figure VII-1
The results of the community noise survey indicate that the mean noise level as defined by CNEL in areas of the community where noise sensitive land uses are located is approximately 57 dB, ranging from 44 to 64 dB. Such levels are typical of suburban residential neighborhoods and are considered normally acceptable for all noise sensitive land uses according to criteria suggested by the Office of Noise Control Guidelines (Figure VII-1).

The median noise level (L_{50}) is the criterion commonly used in noise ordinances or in other types of performance standards to assess the acceptability of noise sensitive land uses located in proximity to commercial or industrial noise sources. During the survey, median (L_{50}) noise levels at the sites monitored continuously for 24 hours or more ranged from 38 to 49 dB(A) during the daytime hours (7 a.m. to 10 p.m.). During the nighttime hours (10 p.m. to 7 a.m.), L_{50} levels ranged from 24 to 48 dB(A).

Maintenance of desirable noise exposures for sensitive areas are addressed through consideration of sporadic noise normally associated with stationary land uses. Table VII-2 provides a method of determining land use compatibility for sensitive uses through the assignment of noise exceedence levels and time restrictions.

TABLE VII-2

NOISE LEVEL PERFORMANCE STANDARDS*

<table>
<thead>
<tr>
<th>Category</th>
<th>Cumulative Number of minutes in any one-hour time period</th>
<th>Daytime 7 a.m. to 10 p.m.</th>
<th>Nighttime 10 p.m. to 7 a.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>70</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>75</td>
<td>70</td>
</tr>
</tbody>
</table>

* Each of the noise level standards specified in this table shall be reduced by five (5) dB(A) for pure tone noises, noises consisting primarily of speech or music, or for recurring impulsive noises. These noise level standards should be applied at a residential or other noise-sensitive land use and not on the property of a noise-generating land use.

SUMMARY

Existing and projected future traffic volumes, as well as noise sources from industry, trains, aircraft and recreational activities have the potential to increase noise to unacceptable levels in residential and other noise-sensitive areas of the plan area. Similarly, the expansion of residential uses near industry and airports may displace these activities if improper land use planning with regard to noise occurs. A series of policies and implementation measures have been prepared to address these issues.
CHAPTER VII - NOISE ELEMENT

NOISE ISSUES

The following issues have been identified regarding noise:

- Noise exposure from conflicting land uses and transportation corridors.
- Maintenance of acceptable noise levels.

GOALS AND POLICIES

The following presents the goals and policies for noise in the planning area. Implementing programs are contained in the following subsection.

At the end of each policy is listed in parenthesis a code beginning with the letter "I" followed by a number. This code refers to the pertinent implementing program.

GOALS

1. Ensure that residents of the Bakersfield Metropolitan Area are protected from excessive noise and existing moderate levels of noise are maintained.

2. Protect the citizens of the planning area from the harmful effects of exposure to excessive noise, and protect the economic base of the area by preventing the encroachment of incompatible land uses near known noise-producing roadways, industries, railroads, airports and other sources.

POLICIES

Goals will be achieved through the following policies which set more specific directions and guide actions.

1. Identify noise-impact areas exposed to existing or projected noise levels exceeding 65 dB CNE (exterior) or the performance standards described in Table VII-2. The noise exposure contour maps on file at the City of Bakersfield and County of Kern indicate areas where existing and projected noise exposures exceed 65 dB CNE (exterior) for the major noise sources identified (I-1).

2. Prohibit new noise-sensitive land uses in noise-impacted areas unless effective mitigation measures are incorporated into project design to reduce noise to acceptable levels. (I-2, I-3, I-6, I-7).

3. Review discretionary industrial, commercial or other noise-generating land use projects for compatibility with nearby noise-sensitive land uses.
Additionally, the development of new noise-generating land uses which are not preempted from local noise regulation will be reviewed if resulting noise levels will exceed the performance standards contained within Table VII-2 in areas containing residential or other noise-sensitive land uses (I-3, I-6, I-7).

4. Require noise level criteria applied to land uses other than residential or other noise-sensitive uses to be consistent with the recommendations of the California Office of Noise Control (see Figure VII-1 (I-4)).

5. Encourage vegetation and landscaping along roadways and adjacent to other noise sources in order to increase absorption of noise (I-7).

6. Encourage interjurisdictional coordination and cooperation with regard to noise impact issues (I-8).

7. Establish threshold standards for the determination of the existence of cumulative noise impacts that are significant, and will therefore require mitigation to achieve acceptable noise standards that do not exceed the standards contained in this element (I-9)

IMPLEMENTATION

The following are programs to be carried out by the City of Bakersfield and County of Kern to implement the goals and policies of the Noise Element. This listing is not to limit the scope of implementation of this plan. State law requires that planning agencies recommend various methods of implementation of the general plan as part of their ongoing duties.

1. Maintain noise contour maps which enable planning agencies, developers and the public to identify noise impacted areas on the land use map.

2. Review discretionary development plans, programs and proposals, including those initiated by both the public and private sectors, to ascertain and ensure their conformance to the policy framework outlined in this element.

3. Require development of proposed residential or other noise sensitive land uses in noise-impacted area to comply with the noise standards of 65 dB CNEL or less in outdoor activity areas and 45 dB CNEL or less within interior living spaces and the performance standards within Table VII-2.

4. Require proposed commercial and industrial uses or operations to be designed or arranged so that they will not subject residential or other noise sensitive land uses to exterior noise levels in excess of 65 dB CNEL and interior noise levels in excess of 45 dB CNEL and so that impacts on noise sensitive uses shall not exceed the performance standards in Table VII-2.
At time of any discretionary approval, such as a request for zone change or subdivision, the developer may be required to submit an acoustical report indicating the means by which the developer proposes to comply with the noise standards. The acoustical report shall:

a) Be the responsibility of the applicant.

b) Be prepared by a qualified acoustical consultant experienced in the fields of environmental noise assessment and architectural acoustics.

c) Include representative noise level measurements with sufficient sampling periods and locations to adequately describe local conditions.

d) Include estimated noise levels in terms of CNEL and the standards of Table VII-2 (if applicable) for existing and projected future (10-20 years hence) conditions, with a comparison made to the adopted policies of the Noise Element.

e) Include recommendations for appropriate mitigation to achieve compliance with the adopted policies and standards of the Noise Element.

f) Include estimates of noise exposure after the prescribed mitigation measures have been implemented. If compliance with the adopted standards and policies of the Noise Element will not be achieved, a rationale for acceptance of the project must be provided.

5. Develop implementation procedures to ensure that requirements imposed pursuant to the findings of an acoustical analysis are conducted as part of the project permitting process.

6. Enforce the State Noise Insulation Standards (California Administrative Code, Title 24) and Chapter 35 of the Uniform Building Code concerning the construction of new multiple-occupancy dwellings such as hotels, apartments, and condominiums.

7. Investigate development and adoption of a community noise control ordinance to address noise complaints, and to provide local industry with performance standards for future development and equipment modifications. The noise exposure information developed during the community noise survey should be used as a guide in preparation of the ordinance. The ordinance should be consistent with the "Model Community Noise Control Ordinance" prepared by the California Office of Noise Control in 1977 with modifications made to reflect local concerns
and conditions. Periodically review and update the City of Bakersfield’s noise ordinance under Chapter 9.22 of the Municipal Code.

8. Amend the city and county zoning ordinances as necessary to reflect the policies and programs of the Noise Element.

9. Cooperate and discuss with all appropriate government agencies the planning documents governing noise-impact issues for consistency and coordination.

10. The following standards shall be used to determine the existence of significant cumulative noise impacts expected to result from proposed construction or development projects. The projected occurrence of such significant cumulative impacts shall require the adoption of practical and feasible mitigation measures to be identified in an Environmental Impact Report or Negative Declaration, whichever is applicable.

STANDARDS FOR CUMULATIVE NOISE IMPACTS

A significant increase in ambient noise level affective existing noise-sensitive land uses (receivers), requiring the adoption of practical and feasible mitigation measures, is deemed to occur where a project will cause:

An increase in ambient noise level of 1dB or more over 65dB CNEL, where the existing ambient level is 65dB CNEL or less;

or

The ambient noise level is less than 60 dB CNEL and the project increases noise levels by 5 dB or more;

The ambient noise level is 60 to 65 dB CNEL and the project increases noise levels by 3 dB or more;

The ambient noise level is greater that 65 dB CNEL and the project increases noise levels by 1.5 dB or more.